Emission properties of oxyluciferin and its derivatives in water: revealing the nature of the emissive species in firefly bioluminescence.
نویسندگان
چکیده
The first systematic steady-state and time-resolved emission study of firefly oxyluciferin (emitter in firefly bioluminescence) and its analogues in aqueous buffers provided the individual emission spectra of all chemical forms of the emitter and the excited-state equilibrium constants in strongly polar environment with strong hydrogen bonding potential. The results confirmed the earlier hypothesis that excited-state proton transfer from the enol group is favored over proton transfer from the phenol group. In water, the phenol-keto form is the strongest photoacid among the isomers and its conjugate base (phenolate-keto) has the lowest emission energy (634 nm). Furthermore, for the first time we observed green emission (525 nm) from a neutral phenol-keto isomer constrained to the keto form by cyclopropyl substitution. The order of emission energies indicates that in aqueous solution a second deprotonation at the phenol group after the enol group had dissociated (that is, deprotonation of the phenol-enolate) does not occur in the first excited state. The pH-dependent emission spectra and the time-resolved fluorescence parameters revealed that the keto-enol tautomerism reaction, which can occur in a nonpolar environment (toluene) in the presence of a base, is not favored in water.
منابع مشابه
β‐Deuterium Isotope Effects on Firefly Luciferase Bioluminescence
A 5,5-d2 -luciferin was prepared to measure isotope effects on reactions of two intermediates in firefly bioluminescence: emission by oxyluciferin and elimination of a putative luciferyl adenylate hydroperoxide to dehydroluciferin. A negligible isotope effect on bioluminescence provides further support for the belief that the emitting species is the keto-phenolate of oxyluciferin and rules out ...
متن کاملSpectroscopic studies of the color modulation mechanism of firefly (beetle) bioluminescence with amino-analogs of luciferin and oxyluciferin.
Spectroscopic properties of amino-analogs of luciferin and oxyluciferin were investigated to confirm the color modulation mechanism of firefly (beetle) bioluminescence. Fluorescence solvatochromic character of aminooxyluciferin analogs indicates that the bioluminescence of aminoluciferin is useful for evaluating the polarity of a luciferase active site.
متن کاملDistinguishing between keto-enol and acid-base forms of firefly oxyluciferin through calculation of excited-state equilibrium constants
Although recent years have seen much progress in the elucidation of the mechanisms underlying the bioluminescence of fireflies, there is to date no consensus on the precise contributions to the light emission from the different possible forms of the chemiexcited oxyluciferin (OxyLH2) cofactor. Here, this problem is investigated by the calculation of excited-state equilibrium constants in aqueou...
متن کاملRed light in chemiluminescence and yellow-green light in bioluminescence: color-tuning mechanism of firefly, Photinus pyralis, studied by the symmetry-adapted cluster-configuration interaction method.
The yellow-green luminescence from firefly luciferase has long been understood to be the emission from enol-oxyluciferin. However, a recent experiment showed that an oxyluciferin constrained to the keto form produced a yellow-green emission in luciferase (Branchini, B. R.; Murtiashaw, M. H.; Magyar, R. A.; Portier, N. C.; Ruggiero, M. C.; Stroh, J. G. J. Am. Chem. Soc. 2002, 124, 2112-2113). Th...
متن کاملcybLuc: An Effective Aminoluciferin Derivative for Deep Bioluminescence Imaging
To enhance the efficiency of firefly luciferase/luciferin bioluminescence imaging, a series of N-cycloalkylaminoluciferins (cyaLucs) were developed by introducing lipophilic N-cycloalkylated substitutions. The experimental results demonstrate that these cyaLucs are effective substrates for native firefly luciferase (Fluc) and can produce elevated bioluminescent signals in vitro, in cellulo, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 119 6 شماره
صفحات -
تاریخ انتشار 2015